Mark Scheme - 4.1 Stereoisomerism

1.

(iv)
$$H_3C$$
 H $C = C$ (or Z form) [1]

(iii) Side effects from other optical isomer / lower dose needed / improved pharmacological activity / only one isomer has correct orientation to bind with biological molecule [1]

(1 mark for acid (accept aldehyde), 1 mark for ketone)

	(c)(i)	Ethylami	ne, ethanol, phenol, ethanoic acid [1]	
	(ii)		ne is basic because it accepts a proton readily (1) due to the lone pair of	
		electrons on the nitrogen. (1) Phenol is acidic because it loses a proton / the anion formed is stabilised (1) by delocalisation of the negative charge over the benzene ring. (1) (Accept description e.g. in phenoxide ion lone pairs of electrons on oxygen become		
		delocalise	ed with electrons in benzene ring.) [4]	
			Total [14]	
2.				
	(a)	Hydrogen bonding occurs between (1) oxygen, nitrogen or fluorine (1) of one molecule and hydrogen, which is bonded to oxygen / nitrogen / fluorine of another molecule (1)		
			es do not contain an O-H, N-H or F-H bond and cannot therefore gen bond to water molecules (1)	[4]
		QWC	Candidates should have use 'a selection and form of writing appropriate to purpose and to complexity of subject matter'	[1]
	(b)	(i)	The (purified) petroleum is separated by heating (1) due to the different boiling temperatures of different fractions (1)	
			OR the mixture is vaporised (1) and then condensed according boiling temperatures (1) (as at the oil refinery)	to [2]
		(ii)	CuCl ₂ Cu +2 CuCl Cu +1 (1)	
			(reduction occurs when) the oxidation number becomes less positive (1)	/e [2]
	(c)	(i)	Same molecular formula but a different structural formula / structure	[1]
		(ii)	Both of the carbon atoms of the double bond have different atoms of groups bonded to them (1) There is no free rotation about the double bond (1)	[2]
		(iii)	M _r of compound A is 146.3 / 146 (1)	
			Cost per mole is $\frac{146.3 \times 48 \times 100}{100 \times 73}$ = £96.20 (1)	
			(Accept £96.00 per mole if M _r of 146 has been used)	[2]
			Total	[14]

[1]

- (b) (i) Acidified potassium dichromate allow H⁺, Cr₂O₇²⁻ [1]
 - (ii) I An equimolar mixture of two enantiomers / optical isomers
 do not accept 'equal mixture' [1]
 - II It has no (apparent) effect on the plane of polarised light [1]
- (c) But-2-enoic acid; this is because each of the carbon atoms of the double bond has two different groups / atoms
 allow reason based on the other isomer [1]
 - (ii) Any TWO from the following for (1) each reagent used / temperature / quantities / time of reaction / catalyst / solvent [2]
- (d) Reagent(s) KOH/I₂ or NaOC1/KI (1) allow names
 Observation Yellow precipitate (1) [2]
- (e) The NMR spectrum will consist of two peaks, as there are two discrete 'areas' of protons; these will be seen at between 2.0 to 2.5 (CH₃) and between 2.5 to 3.0 (CH₂) (1) The peak area ratio will be 3:2 for the CH₃ and CH₂ protons respectively (1) There will be no splitting of either signal as the protons causing these signals are not bonded directly to other carbon atoms that also have protons (1)

1 max if only one peak described correctly [3]

QWC Legibility of text; accuracy of spelling, punctuation and grammar; clarity of meaning. [1]

Total [13]

- 4. (a) (i) (2-)Methylpropan-2-ol
 - (ii) 30.1/30 [1]
 - (iii) (Concentrated) sulfuric acid / phosphoric acid / aluminium oxide / pumice [1]

(iv)

(with or without n)

(v)

- (1) for structure, (1) for asterisk [2]
- (vi) I acidified potassium dichromate / H⁺, Cr₂O₇²⁻(aq) [1]
 - II ethanal has a C = O bond at 1650-1750 cm⁻¹
 (metaldehyde does not have this bond) (1)
 - metaldehyde has a C O bond at 1000-1300 cm⁻¹ (ethanal does not have this bond) (1) [2]
- (b) (i) Reagent 2,4-dinitrophenylhydrazine / 2,4-DNP OR iodine / NaOH or KI / NaOCI (1)
 - Observation yellow / orange / red precipitate OR yellow precipitate (1) [2]
 - (ii) Reagent ethanol / sulfuric acid OR NaHCO₃ OR Ag⁺/NH₃ / Tollens' (1)
 - Observation sweet smelling liquid OR effervescence OR silver mirror (1) [2]

Total [13]

[1]

[1]

5.

(a) Any valid ester structure with formula C10H12O2

[1]

Examples:

(b) (i) Compound X [1]

(iii)
$$HO \longrightarrow \begin{array}{c} CH_3 & O & H \\ \downarrow & \downarrow \downarrow & \downarrow \\ -C & C & -C & -H \\ H & H & H \end{array}$$

(iii) Rotate the plane of polarised light in opposite directions [1]